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XXIIL. On the Rolling Motion of a Cylinder. By the Rev. HENrRy MoseLey, M.A.,
F.R.S., Corresponding Member of the Institute of France,
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The oscillatory motion of a heterogeneous cylinder rolling on a horizontal plane
has been investigated by EvLer*. He has determined the pressure of the cylinder
on the plane at any period of the oscillation, and the time of completing an oscilla-
tion when the arcs of oscillation are small.

The forms under which the cylinder enters into the composition of machinery are
so various and its uses so important, that I have thought it desirable to extend this
inquiry, and in the following paper I have sought to include in the discussion the
case of the continuous rolling of the cylinder, and to determine—

1st. The time occupied by a heterogeneous cylinder in rolling continuously through
any given space.

2ndly. The time occupied in its oscillation through any given arc.

3rdly. Its pressure, when thus rolling continuously, on the horizontal plane on
which it rolls.

Under the second and third heads this discussion has a practical application to the
theory of the pendulum ; determining the time occupied in the oscillations of a pen-
dulum through any given arc, whether it rests on a cylindrical axis or on knife-
edges, and the circumstances under which it will jump or slip on its bearings; and
under the first and third, to the stability and the lateral oscillations of locomotive
engines in rapid motion, whose driving-wheels are, by reason of their cranked axles,
untruly balanced.

Let AMB represent the section of a heterogeneous cylinder through its centre of
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* Nova Acta Acad. Petropol. 1788. “ De motu oscillatorio circa axem cylindricum plano horizontali incum-
bentem.”
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550 THE ROLLING MOTION OF A CYLINDER.

gravity G and perpendicular to its axis C; and let M be its point of contact, at any
time, with the horizontal plane BD on which it is rolling. Assume
a =AC, h=CG, i=ACM.
W=weight of cylinder. Wk*=momentum of inertia of the cylinder about an axis
passing through G and parallel to the axis of the cylinder.

. ., /b .
w=given value of the angular velocity (%) when ¢ has the given value 4,.

f,=given value of ¢ when the angular velocity has the given value .
{=given value of GM corresponding to the value 4, of 4.

Then W (A*+GM?) =W (k4 a*+h*—2ah cos d)=moment of inertia about M. Since
moreover the cylinder may be considered to be in the act of revolving about the point
M by which it is in contact with the plane, one-half of its vis viva is represented by
the formula

1w db\?
3 —g—(kQ-l—a?-—Qah cos 0+ h?) (E:) ,
and one-half of the vis viva acquired by it in rolling through the angle ,—4, by
1 W 2 2 de 2 2 2) ,,2
1 7{(1624_& —2ah cos 041 )(% — (B P)a }
But the vertical descent of the centre of gravity while the cylinder is passing from

the one position into the other, is represented by

h(cos —cos 4,).
Therefore, by the principle of vis viva*,
1w db\ 2
3 ~;—{(lc2+ a@’—2ah cos 04 h*) (%) - (k2+12)w2}=Wk(cos 0—cos d,),

whence we obtain

d@) __2gh(cos §—cos 0,) + (k2 4 1?)w?

dt k4 a®—2ah cos b+ A2
2 2
cose——(cosé k+l
g ogh "
=(%)— i W
(a/z h —cos
Let —(ahha) e @)
Q_I_ZQ
B=cos 0, — < ) e e o (3

e wm G
t—_—(g)f/o‘e‘('j—o"—;—gﬁ_s?gfde, 7.

where ¢ represents the time of the bedy’s passing from the inclination 4, to zero.

* Porsson, Dynamique, 2™ partie, 565 ; PonceLer, Mécanique Industrielle ; MoseLey, Mechanical Principles
of Engineering, Art. 129.
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Now let it be observed that in this function &> so long as a is less than g, since
B> —(B+4P)o?, or EP4a*—2ah cos 6,+h* > — (B4 1) s,
and o B4k > 20k cos 8, — (P42,
k2472

and ( +b+)>cos0 + Lo

1+a 1—ea o.— COS

et 1+8 =’ 18 =7 cosf— ﬁ—q sec” ¢.

Then when =0, 7 sec%o:%?_—;:qz, - sec =1 and ¢=0.

When 0=14, let p=09¢,,
1/k2 & «a
e—cos § “§(ﬁ+—+71)——cos9
- g sec’ o=y = (k‘+l¢)
20h

1—a CZZ k h)

2 — . ( )2 Vi ( 2) 2
2 .
! (1 Ccos 91) ( . ) gﬁ ers 91+(k +l )w

( \7c9+¢12+k2 Qahcost, g
a/ (R + 3)w? ~a?’

also

(k2 +®)w®+ 2gh vers §
‘. Se(:2 ¢1= {kg+ (a_h)g}wg ], . . B . . . . . . . . (5.)

Now f 9‘(2;5082) db’-—/ %(oc‘;;ocosﬁe dg de.

. — cosf
And since ZOSOO ﬂ-q sec’ @,

. 2cosf—(a+p) cos’p—¢?
" (@B Teostetg?

(e +B)(c0s’p +¢*) + (a—B) (cos® ¢ —¢°)
cos? ¢+ ¢*

©. 2co0sd=

. ,__acos?p 4 Bg?
cos = ZO—SQ'E_FQ’Q e s e & e e s e & e & e s (6)

(cos? g+ %)% — (« cos® g+ B¢?)?
(cos® ¢+ ¢°)?

sin? d=
(cosQ ¢ +q®—a cos? ¢ — g% (cos? ¢ + ¢* + o cos? ¢ + Bq?)_
(cos?p+¢%)?*

_{(1—B)g*+ (1 —a) cos® e}{(1 +B)¢" + (1 + ) cos® o}
o (¢°+ cos® ¢)?

. ¢?+p®cos? ¢
=(1-p")¢’.sin’ @, @+ cos? p)2’

(9 +p? cos® ¢) 00*%)*
Ficoste o (1)

4 B2

- sind=qg(1—p¥sing.
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Now
di di dcos§ dcosg _ sm¢.dcos0
de—dcos b dcos ¢ do sin dcosg® ° ° ¢ 0ttt (8.)

Also by equation (6.),

dcosf _ 2a(q®+ cos? ¢) cos p—2(« cos® p+p¢%) cos ¢ 2(a—p)¢? cos ¢ .
decoso™ (¢*+ cos? ¢)? T (¢®+ cos?p)® °

. by equations (7.) and (8.),
d0 2(a-—ﬁ)g2. ¢+ cos’p  cosg 2(«x—pB)g cos ¢
T (=) (P+p* cos?g)b (¢F+ cost@)*T (1—pYF (¢2+ cos® p)(g+p? cos® @)Y

oL —= d o
- (cos ;?-s;) di 2((1—52))‘E {g %+ cos? ¢) (¢* +p cos? @)%}

_2(0:---5)412 1
T A=) L¢P+ 1 sin® g) (¢ +pP—p? sin fp)%‘}
_ 2(a—B)g? 1
T A2VE( 2 2 2
(L—B(p* +¢?2(1 +¢1){( 1ig25m2 )(1——71—@&:1%)
_ 2(a—B)g° { 1 1
T (=P ¢ (L +¢%) L (1 —nsin® g) (1 —c? sin ¢) ¥
if
1 1 1-8
=Y eT . 1—a—a—p . (9)
1-8
and
1+a
P 14+ (1+x)(1—p)
Cz""'ﬂ;"q’?“lwe 1=a— Q@—f) > ¢t e e e (10.)
1+ﬂ_1-—ﬁ
. % s a—cos 0\ df 2(a—B)¢® & do
i ./o. (cose ~f3 d(pdg (1_@Q)%(p2+g2)%(1+gg)~/ol (L=nsin?g)(1 —¢? sin? p)#

_ tep _
_(1—69)5‘(p9+q2)%(1+qﬂ)H( "C¢‘>" coee e (L)

where I1(—mncg,) is that elliptic function of the third order whose parameter is —» and
modulus c.

W‘iﬁf{ci@ <1“:s}“‘/]_ﬁ2
/1—.a

N “Kl—ﬁ) <a—-1

1+q G:Z a—B)’

#* I cannot find that this function has before been integrated, except in the case in which 8 is exceedingly

small.
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2(a—B)g? _ 2= (alz+lz+ )“2
(1—@%(1’ +Pi1+¢) " vV 2(e—B) (R*+ P
\/(ak Iz+> 2cosd, + g
B+ (a—h)?

(12.)

= 5y .
\/ah(k2+19) <1 + ”T;’—
‘. by equations 11 and 4,

R+ (a—h)?

\/yh B (1+ ““’2)

where (9.) (2.) (3.)

I](—nc@l)’ . . e . [ o e . (13.)

2 2 2
~ cos b, —f—l—c—“—'-—l-w2 24 vers 6, +]c +12w2
a:z e ByE =0 - (14)
2 2 —_—
ah h+) costy+5 (Ic+19)(1+g

and (10.) (2.) (3.)

k2 242
_(1+20-8) { ah+a+lz) }{ver89l+ S wg}ah
ct= 2(x—p) = aw?
T
g

k4B
2 2 2
{lc + (a+h) }{vers 0,+ 5% w }

2(k%+ P)(l +f§)

-
S—

Y ¢ 1)

The value of II(—ncg,) being determinable by known methods (LEGENDRE, Fonc-
tions Elliptiques, vol. i. chap. xxiii.), the time of rolling is given by equation 13.
In the case in which the rolling motion is not continuous but oscillatory, we have

»=0; and therefore (equation 5.) qzl:g ; II(—nco,) becomes therefore in this case a

complete function.
To express the value of this complete elliptic function of the third order in terms
of functions of the first and second orders, let

2 2ah
2
sin '44__2_1”_]62_'_(&_'_}&)2 e e e e e e e . (18

Then*
tan ¢ 1r L
1 —nc})=F(c5) + g F(5) -Eed)—E(c5) Feeh) |
Representing therefore the time of a semi-oscillation by #,,

h= Vgh(lc:-:lf) {F< )+1 t;nsiw F(%)E(Cﬂla)—E(cg)F(ml«)}}, .. (7))

k4 k
where (15.) = 2(/5%9))_ verséd. . . . . . . . . . . . (18)

* LeceNDRE, Calcul des Fonctions Elliptiques, vol. i. chap. xxiii. Art. 116.



554 THE TIME OF OSCILLATION OF

Since the values of elliptic functions of the first and second orders, having given
amplitudes and moduli, are given by the tables of LrceNDRE, it follows that the value
of ¢ is given by this formula for all possible values of ¢ and ).

If the angle of oscillation ¢, be very small ¢ is very small, so that its square may be
neglected in comparison with unity. In this case

Fey=FEcy=+ and Fe;=Ec;=2,

FegEed—EcFey=0.
For small oscillations therefore

B4 (@=h2? =«
=VARTEE (19.)

IF the pendulum oscillate on knife-edges a=0, [=%, and we obtain the well-known
theorem of LEGeENDRE (Fonctions Elliptiques, vol. i. chap. viii.)

t_\/’“her ( ) e (20)

where (18.) = 5 ers 9,—_sm 5

.1
R P 1 1Y)

In the case of the small oscillations of a pendulum resting on knife-edge, equation
20. becomes

t=A /T (@)

which is the well-known formula appllcable to that case.
If the pendulum be one which for small arcs beats seconds (21.),

2 2
1 =\/lc ;;L]l .7,
T
2F(C§)

(200) U=—, 0 L L L L L L oL L (23)

by which equation the time of the oscillation ¢through any arc, of a pendulum which
oscillates through a small arc in one second, may be determined. I have caused the
following Table to be calculated from it.



A PENDULUM UPON KNIFE-EDGES.
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Table of the Time occupied in oscillating through every two degrees of a complete
circle, by a Pendulum which oscillates through a small arc in one second.

Arc of oscil- | Logarithm of Time of one | Arc of oscil- | Logarithm of . Time of one
lation on each 7 Logarithm of complete | 12tion on each 7\ Logarithm of o
side of the F(':Z) from the %.F(c’_’). oscillation in | Side of the F(OZ) from the| 75" F(J) oscilabionin
vertical in tables of 7 2 seconds. vertical in tables of x 2 seconds.
degrees. LEGENDRE. degrees. LEGENDRE.
2 01961529 0-0000330 1:0001 92 02716435 0-0755336 11899
4 01962521 0:0001322 1-:0003 94 0:2752672 040791473 1:2000
6 0:1964176 0:0002977 1-0006 96 0-2790010 0-0828811 1:2123
8 01966493 0:0005294 1:0012 98 0:2828480 0-0867281 1:2210
10 0°1969473 0-:0008274 1:0019 100 0-2868113 0:090614 12322
12 0-1973118 0-0011919 1-:0027 102 02908945 00947746 1:2439
14 041977430 0:0016231 1:0037 104 02951011 0-0989812 1:2560
16 0:1982408 0:0021209 1:0049 106 02994353 0:1033154 1:2686
18 0:1988057 0+0026858 1:0052 108 0:3039012 0-1077813 12817
20 0:1994377 0-0033178 1:0077 110 0-:3085036 0-1123837 12953
22 0°2001372 0:0040173 1:0160 112 0:3132474 0-1171275 1:3099
24 0:2009044 0:0047845 1:0110 114 0-3181380 0-1220181 13249
26 02017396 0-0056197 1:0130 116 0-3231814 0:1270615 1-3400
28 0:2026431 0:0065232 1-0151 118 0-3283839 0-1322640 1:3560
30 02036153 040074954 1-0174 120 0-3337526 0:1376327 1:3729
32 0°2045494 0:0084295 1:0196 122 0:3392950 0-1431751 1:3905
34 0:2057675 0:0096476 1:0224 124 0-3450196 0-1488997 1-4089
36 0-2069483 0-0108284 140252 126 0:3509356 0-1548157 1-4283
38 0-2081996 0:0120797 1:0290 128 0:3570532 0:1609333 1-4486
40 0:2095219 0:0134020 140314 130 0-3633838 0:1672639 1-4698
42 02109158 040147959 1:0347 132 03699399 01738200 1:4922
44 0-2123818 0:0162619' 1:0381 134 0:3767357 0-1806158 15157
46 0:2139206 0-0178006 1:0418 136 0+383786Y 01876670 1-5405
48 0:2155329 0:0194130 1:0457 138 0:3911115 0-1949916 1:5667
50 0-2172193 0-0210994 1:0500 140 0-3987297 0.2026098 1-5944
52 0:2189808 0-0228609 1:0540 142 04066647 0-2105448 16238
54 0-2208180 0-0246981 140585 144 0:4149432 0-2188233 1-6551
56 0:2227319 0:0266120 1:0632 146 04235961 0-2274762 16884
58 0:2247233 00286034 1-:0681 148 04326595 0-2365396 17240
60 0:2267932 0:0306733 1:0732 150 04421759 0:2460560 17622
62 0-2289427 0:0328228 1:0785 152 04521963 0-2560764 1-8032
64 0:2311728 0:0350528 1:0840 154 0-4627819 0:2666620 18478
66 0:2334846 00373647 1:0898 156 0-4740076 0-2778877 1-8963
68 02358794 0-0397595 1:0959 158 0-4859666 0-2898467 1:9491
70 0-2383585 00422386 1:1021 160 04987770 0-3026571 2:0075
72 02409232 0:0448033 11087 162 05125914 0-3164715 2:0724
74 02435750 00474551 1-1154 164 05276128 0-3314929 2:1453
76 0-2463154 040501955 11225 166 0:5441204 0-3480005 2:2285
78 0-2491459 0:0530260 11298 168 05625136 0-3663937 2:3248
80 0:2520684 0:0559485 1:1375 170 05833962 0-3872763 2:4393
82 0:2550846 0:0589647 11454 172 06077506 0-4116307 2:5801
84 0:2581965 00620766 11536 174 0+6373550 0:4412351 27621
86 02614060 00652861 1:1622 176 06760772 0-479907 30193
88 02647155 00685956 1:1711 178 07351923 05390724 34600
90 02681272 0:0720073 11802 180 Infinite. Infinite. Infinite.
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The pressure of the cylinder on its point of contact with the plane on which it rolls.

Let A’ be the point where the point A
of the cylinder was in contact with the
plane.

Let AAN=z, NG=y.

-—X=horizontal pressure on M in di-

rection A'M.
Y=vertical pressure on M in direc- ,
tion MC. f

Since the centre of gravity G moves as Y
it would do if, the whole mass being col- B M N A D
fected there, all the impressed forces were applied to it, we have, by the principle of
4’ ALEMBERT,

]
1
]
i
] )
|‘ '
1
i
1

W d%
ga—"X
Wi voe o .. (28)
y__
But since CA=a, CG=h, MCA=/,
x=afd—hsind,
y=a-hcos d;
%—j:(a—-hcos 0)%,
%:h sin Agg
d? . di\2 d*
Zﬁg::h sin "(d“t) + (@~ h cos 0)375[
C e e e e (290
d? i\ 2 . Ad%
E‘Z—:h cosﬂ<ﬁ) + A sin Fr (
di\? d*
Assume Il_t) =M, <JF>=—N’
. by equation (29.),
2
A —Mh sin 0—N(a—h cos 0)
2
%:Mh cos —Nhsind;
by equation (28.),
Wk . a
X= —g—{—-M sin 0+N(,—l~—-cos 0)}
(30.)

Y=W+Wy—k{M cos §—Nsin 0}.
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But by equation (1.), substituting —¢ and —4, for 4 and 4,

2 2giz (cos § —cos §,) + (A2 + I?)w?
M ( k%_l_ag_zahcosa_'_hg . L] . . . . . . - . » . (31.)

aw?
/g 2ah(cos§—cos b))+ (A2 + F)-—;—
= (d) P = 2ahcos i 1 I

o
R + 02+ 12— 2ak cos f, + (k2+ze).‘i;i~ (K2 + a® + K2 —2ah cos )

= (Z) £+ a*>—2ah cos b+ hQ 3
(g (+5)(1+ a;) |
M-—-() FTE TR e[ - e e . . (32)

Observing that o’+A*—2ah cos 4,=1%
Differentiating this equation and dividing by (g),

- gh(E® +ze)( 142 )sma

-—h: dtQ _—(k2+a2+/z9—2a}tcosa) N . . . . . (33-)

Substituting these values of M and N in equation (30.), and reducing,

__Whsind (K2 +12) (k2 + k> —ah cos §) (g + aw?)
X=—7 {l T g+ @+ P—2ahcos b)? y (34.)
_Wif sa (k% + %) (g + aw?) { ah cos? 8 — (A% 4 o2 + 1) cos 0+ ah} .
Y—7{<Z Sg>—- (]c2+a2+k2—-2a]lc086) } . (35)

The rotation of a body about a cylindrical axis of small diameter.
Assuming @=0 in equations (31.), (83.), and 4,=0, we have

M=2gk(cos §—1

hsin b
B2 )+W2 Nzg

B
Therefore, by equation (30.),

Wi(gh(2—3 cosd .
X = g{g__(_ﬁlﬁﬁ“l aﬁ}smé. Ce e e e (40.)

Wh(gh(3 cos?f— g
Y=W4 - {g‘( coskg_’_ifos 1)-|-w20089}. coe .. (41)

The last equation may be placed under the form

Y= W+,§Yﬁi{{ S0+ (’“2”‘2 )} (k;;,fgw ) %}

B2 . . . s
If 5(%77#_1) be numerically less than unity, whether it be positive or nega-

tive, there will be some value of 4 between 0 and # for which this expression will be
equalled, with an opposite sign, by cos 4, and for which the first term under the
MDCCCLI. 4c
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bracket in the value of Y will vanish. This corresponds to a minimum value of Y
represented by the formula

2
v W { <k2+h

FaiE 5o — 1)+1] e, (42)

o L2+ 12 . . ..
But if 3—( —2_57; w2—l) be numerically greater than unity, then the minimum of Y

will be attained when =, and when

Wk h
Y= w—-—{ﬂ P‘%—Q} N 7T %

The jump of an axis.

If Y be negative in any position of the body, the axis will obviously jump from its
bearings, unless it be retained by some mechanical expedient not taken account of
in this calculation. But if Y be negative in any position, it must be negative in that
in which its value is a minimum. If a jump take place at all, therefore, it will take
place when Y is a minimum ; and whether it will take place or not, is determined
by finding whether the minimum value of Y is negative. If therefore the expression
(42.) or (43.) be negative, the axis will jump in the corresponding case. An axis of
infinitely small diameter, such as we have here supposed, becomes a fixed axis; and
the pressure upon a fixed axis, supposed to turn in cylindrical bearings without
Jfriction, is the same whatever may be its diameter; equations (40.) and (41.) deter-
mine therefore that pressure, and equation (42.) or (43.) determines the vertical strain
upon the collar when the tendency of the axis to jump from its bearings is the
greatest.

The jump of a rolling cylinder.

Whether a jump will or will not take place, has been shown to be determined by
finding whether the minimum value of Y be negative or not. '

e 17k & . .
Substituting « for —2—<a7l+5+%> and reducing, equation (35.) becomes

2 2 2 20 —
Y=W<1—gcos 0) _W(lc +!/ )(;g+aw ){cos 9 2acos0+1},

4ga* (— cos §)*
or -
_ h (k%4 1%) (g + aw?) a?—1
Y—-W(l—acos A)"- 49&2 {1—(¢—' 0059)2}’ . . . . . . e (44.)

o _w{i DU,

2ga*(e— cos 0)° (45.)

n 3(F+P)(g+ aw?)(22—1)
ez a 2ga*(a— cosf)® } cos 0+ 2g0%(— cos )7 sin® 4,

oY {h (12 4+ ) (g + a0?) (a2—1)

d (2 + 5) (9 + a0®)(2*—1)

Y k
—5=0 1st, when - — 29a(a— cos I)°

RS =0, 2ndly, whend==, 3rdly, when
9=0.
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The first condition evidently yields a positive value of ’%25, since it causes the first
term of the preceding equation to vanish; and the second term is essentially posi-
tive, « being always greater than unity.

If, therefore, the first condition be possible, or if there be any value of 4 which
satisfies it, that value corresponds to a position of minimum pressure. Solving in’
respect to cos 4, we obtain

3 2 2 2
“__,\/(chM;;:Z (= ”-—cosa N TR

The first condition will therefore yield a position of minimum pressure, if

/\/(/@Hﬂ G+w)@=1)>—1 . \/(/c2+12 (g4 aw?) (e2—1) <(a-+1)

2gah 2gah > (a—1),

or if

(K + 1) (g +aw?)(@®—1) <(00-l-1)3 P EHP g+ (@=1)

2gah >(oc—l)3 2gah(e+1)* L 47
(BB (g +aw)+l) [

Sgah(a—1) =1

or if
2q9ah(e+1 ) 2qh(e+1)?
g+ad® < (*/Eg#)’(_tl*) or «* < (7?%7%%)1)_%’

and

2gah(a—1)? . 2gh(ax—1)? g
g+ > EIE a1y Y 2 BB a1

whence, substituting for « and reducing, we obtain finally, the conditions

< <%) (/c%{r];z){/c;l: (}; }; (y> and o> (g> (kei];z)JEIEZJF (ha)?z <y> (48.)
Of these inequalities the second always obtains, because
{4 (a—h)y} < (F+0){F+(a+h)},
whatever be the values of k, @ and 4. And the first is always possible, since
(B (ath)?y > (B 4-8) (B4 (a—h)?).
If the first obtain, there are two corresponding positions of CA on either of the

vertical, determined by equation (46.), in which the pressure Y of the cylinder upon
the plane is a minimum.

Substituting the other two values (= and 0) of 4 which cause %{ to vanish, in the
Y
value of e we obtain the values

h (k9+lg)(g+aw)(rx-—l) b (BP+B)(9+aw®) (z+1)
{a 2ga*(a+1)* } and {a 290 (a—1)? }’

or
h (/c9+lg)(g+aw2)(a-l) h (B+P) (g + a0 (x+1)
_5{1 gt el }and;{l— el } L. (49)

4c¢2
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which expressions are both negative if the inequalities (47.) obtain. The same con-
ditions which yield minimum values of Y in two corresponding oblique positions of
CA, yield, therefore, maximum values in the two vertical positions; so that if the
inequalities (48.) obtain, there are two positions of maximum and two of minimum
pressure. '

Substituting the value of cos ¢ (equation 46) in equation (44.), and reducing, we
obtain for the minimum value of Y in the case in which the inequalities (48.) obtain,

Y:%’é{g(az—kz—h2)-(k2+lﬂ)(1+"—;’f)+3\7 (B+B) {k+ (a+ Ry HE+ (a-—h)2}(l+”7;°g)}~

If this expression be negative the cylinder will jump.
In the case in which »=0, which is that of a pendulum having a cylindrical axis
of finite diameter, it becomes

Y—W{Q“—2h2—3’“2 l2+3J(k‘2+l2>{k2+<a+h>2}{kﬁ+<a-h)2}}*- .- (80

If the first of the inequalities (48.) do not obtain, no position of minimum pressure
corresponds to equation (46.); and the inequalities (47.) do not obtain, so that the

a2y . . S
values (49.) of —, given respectively by the substitution of # and 0 for ¢, are no longer

both negative, bat the second only. In this case the value = of ¢ is that, therefore,
which corresponds to a position of minimum pressure, which minimum pressure is
determined by substituting = for 4 in equation (35.), and is represented by

y=w(142) - MR = T et - (’“”ZWQ)(”“”’Q)}:g{aM—W}

4ga® T (et 1) 2ga(z+1) g{F+ (a+ )%}
1 1
- /z{lc2+(a+ﬁ)2—-4ahcosa—9,}(g+aw9) 4ah cos? -—0
:E{a-{-h-— L2 }:‘—Y{a—}-h—-é{l 5 Q} (g +a?) .,
P g @t Ay a K+ {a+h)
w? 1
. Y_W{l o 4};9(1 +29— cos? 50,1' (51.)
T —5 T B+ (at h)?

The cylinder will jump if this expression be negative, that is, if

4}12(1 — aw ) cos? 6
S14 g sorif=—y, 2
B+ (a+h)? L B+ (a+h)?

llw

_ilz J’ 4h cos? 101 44? cos? —é@l
> 14 KB+ (a+h)? ,

or, substltutmg and reducing, if

-ZI 4h(a+ ) cos? 5011
If the angular velocity » be assumed to be that acquired in the highest position of

* When the pendulum oscillates on knife-edges =0, and this expression assumes the form of a vanishing
fraction, whose value may be determined by the known rules. See the next article.
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the centre of gravity, 4, ==, and cos %01=0. In this case, therefore, (equation 51.)
YW(]-—— o 52)

andtherewillbeajumpifw?>%. N GEB)

The Pendulum oscillating on knife-edges.

In this case a is evanescent, and »=0. Equations (31.) and (33.) become, there-

fore,
qlz sin 0

__2gh (cos §—cos 6,)
M= JEEwE and N="5—
Substituting these values of M and N in equation (30.),

_ Wi : ol Yy W p y e it g)
X-—m —2 (cos § —cos 4,) sin d— cos 4 sin ()}, =W++ep (cos d— cos d,) cos d— sin* 4} ;

W2 .
X:F_I_—L%@ cosd—3cosd)sind . . . . . . . (b4)
Wr? £? .
Yzm(S cos® §—2 cos 4 cosé,-{—h—g). N 1)

. . . 1 . .
Y is a minimum when cos f=3cosd, in which case

Wi
Y= e hg csl)) e e ..o (56

There will therefore be a jump of the pendulum upon its bearings at each oscilla-
tion, if the amplitude 4, of the oscillation be such, that
2 k2

1 k 3
3 cos 4, > 75 or cos?d, > Nk

The jump of the falsely-balanced Carriage-wheel.

The theory of the falsely-balanced carriage-wheel differs from that of the rolling
cylinder,—1st, in that the inertia of the carriage applied at its axle influences the
acceleration produced by the weight of the wheel, as its centre of gravity descends
or ascends in rolling; and 2ndly, in that the wheel is retained in contact with the
plane by the weight of the carriage. The first cause may be neglected, because the
displacement of the centre of gravity is always in the carriage-wheel very small, and
because the angular velocity is, compared with it, very great.

If W, represent that portion of the weight of the carriage which must be over-
come in order that the wheel may jump (which weight is supposed to be borne by
the plane), and if Y, be taken to represent the pressure upon the plane, then (equa-
tion 52.)

Y,=W,+Y= W+W(1——— N /)
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In order that there may be a jump, this expression must be negative,

or
Wha? w
S >WaWoora> GO1457), - - . o (58)
or
W .
p>Hbd) . L (69)

The Driving-Wheel of a Locomotive Engine.

The attention of engineers was some years since directed to the effects which
might result from the false balancing of a wheel by accidents on railways, which
appeared to be occasioned by a tendency to jump in the driving-wheels of the
engines. The cranked axle in all cases destroys the balance of the driving-wheel
unless a counterpoise be applied ; at that time there was no counterpoise, and the
axle was so cranked as to displace the centre of gravity more than it does now.
Mr. Georce HEeaToN, of Birmingham, appears to have been principally instrumental
in causing the danger of this false balancing of the driving-wheels to be understood.
By means of an ingenious apparatus*, which enabled him to roll a falsely-balanced
wheel round the circumference of a table with any given velocity, and to make any
required displacement of the centre of gravity, he showed the tendency to jump,
produced even by a very small displacement, to be so great, as to leave no doubt on
the minds of practical men as to the danger of such displacement in the case of
locomotive engines, and a counterbalance is now, I believe, always applied. To
determine what is the degree of accuracy required in such a counterpoise, I have
calculated from the preceding formule that displacement of the centre of gravity
of a driving-wheel of a locomotive engine, which is necessary to cause it to jump
at the high velocities not unfrequently attained at some parts of the journey of an
express train; from such information as I have been able to obtain as to the
dimensions of such wheels, and their weights, and those of the engines{. The
weight of a pair of driving-wheels, six feet in diameter, with a cranked axle, varies,
I am told, from 2% to 3 tons; and that of an engine on the London and Bir-
mingham Railway, when filled with water, from 20 to 25 tons. If n represent the
number of miles per hour at which the engine is travelling, it may be shown by a

simple calculation, that the angular velocity, in feet, of a six-feet wheel is represented by
22 1 . .
44—55, or by gn very nearly. In this case we have, therefore,—since W represents the

* This apparatus is exhibited by Professor Cowper in his lectures on machinery at King’s College. It has
also been placed by Col. Morin among the apparatus of the Conservatoir des Arts et Métiers at Paris.

1 I have not included in this calculation the inertia of the crank rods, of the slide gearing, or of the piston and
piston rods.  The effect of these is to increase the tendency to jump produced by the displacement of the centre
of gravity of the wheel; and the like effect is due to the thrust upon the piston rod. The discussion of these
subjects does not belong to my present paper.
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weight of a single wheel and its portion of the axle, and W, represents the weight,
exclusive of the driving-wheels, which must be raised that either side of the
engine may jump¥*, that is, half the weight of the engine exclusive of the driving-

o 1
wheels,—W=11 to 1 tons, W,=83 to 111} tons, w=5n, g=32"19084 ; whence I have

2
made the following calculations from formula (59.).

Displacement of the centre of gravity of a six-feet
driving-wheel, which will j f th
Weight of the | Weight of a pair Form(;ﬂa g’g-) riving-whee ’vyh elecl orth:i‘gle. & jump ok the
engine in tons, | of wheels with reduced, W
including the ked axl . =1 R
di?\?i:gjgvieelz. cmi‘;x (taonz’.( N B> 128 76(1+V\') Rate of travelling in miles per hour.
n
50. 60, 70.
25 105998 4128 2867 2106
20
8584
3 o 3434 2384 1751
a5 1923_'6_ 5150 3576 2628
25
1073
3 por 4292 2908 2189

It appears, by formula (59.), that the displacement of the centre of gravity necessary
to produce a jump at any given speed, is not dependent on the actual weight of the
engine or the wheels, but on the ratio of their weights; and, from the above Table,
that when the weight of the engine and wheels is 63 times that of the driving-
wheels, a displacement of 2% inches in the centre of gravity is enough to create a
jump when the train is travelling at sixty miles an hour, or of 2 inches when it is
travelling at seventy miles; this displacement varying inversely as the square of the
velocity is less, other things being the same, as the square of the diameter of the
wheel is less ; for the radius of the wheel being represented by @, the angular velocity

. . 22 e e .
is represented by w=-1~5—§, and substituting this value, formula (59.) becomes

( )Zgﬁ(l + W)

If the weight W of the wheel be supposed to vary as the square of its diameter and
be represented by wa®, this formula will become

. A%
)

* It will be observed, that the cranks being placed on the axle at right angles to one another, when the
centre of gravity on the one side is in a favourable position for jumping, it is in an unfavourable position on
the other side, so that it can only jump on one side at once, and the efforts on the two sides alternate.
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still showing the displacement of the centre of gravity necessary to produce a jump
to diminish with the diameter of the wheel. These conclusions are opposed to the
use of light engines and small driving-wheels ; and they show the necessity of a care-
ful attention to the true balancing of the wheels of the carriages as well as the driving-
wheels of the engine. It does not follow that every jump of the wheel would be high
enough to lift the edge of the flange off the rail; the determination of the height of
the jump involves an independent investigation. Every jump nevertheless creates an
oscillation of the springs, which oscillation will not of necessity be completed when
the jump returns; but as the jumps are made alternately on opposite sides of the
engine, it is probable that they may, and that after a time they will, so synchronize
with the times of the oscillations, as that the amplitude of each oscillation shall be
increased by every jump, and a rocking motion be communicated to the engine
attended with danger. ;

Whilst every jump does not necessarily cause the wheel to run off the rail, it
nevertheless causes it to slip upon it, for before the wheel jumps it is clear that it
must have ceased to have any hold upon the rail or any friction.

The Slip of the Wheel.

If f'be taken to represent the coeflicient of friction between the surface of the wheel
and that of the rail, the actual friction in any position of the wheel will be represented
by Y,f. But the friction which it is necessary the rail should supply, in order that
the rolling of the wheel may be maintained, is X. It is a condition therefore neces-
sary to the wheel not slipping that

S
Y1f>X,0rf>?—l. e e e e e .. (60)

If, therefore, taking the maximum value of & in any revolution, we find that f ex-
1

ceeds it, it is certain that the wheel cannot have slipped in that revolution ; whilst if,
on the other hand, f falls short of it, it must have slipped*. The positions between
which the slipping will take place continually, are determined by solving, in respect
to cos 4, the equation
: X
The application of these principles to the slip of the carriage-wheel is rendered less
difficult by the fact, that the value of % is always in that case so small, as compared

with the values of & and a, that g may be neglected in formulz (34.) and (35.), as com-

pared with unity. Those equations then become
,_ Whsinf| k(g + aw®)
X= T
a | 9k +a?)
* Of course, the slipping, in the case of the driving-wheels of a locomotive, is diminished by the fact that
whilst one wheel is not biting upon the rail the other is.

(62.)
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and

Wh(a + aw 8 ha? cos 8
Y= oo Nty e

whence we obtain

Y, W+W{1+"‘° °°”} . 63.)
and
Wh lﬂ(g-l-awg) g g+ a0?) .
X 7{ ) }S“‘G 7{1“*“"9(&2 ) }“‘9 (64.)
hos™ cos § W, )
W+W{1+ 7 } <1+W k9+cos0
Assume

sin §

Wi\ g
ﬁ:(l +—W—1>7;0‘)§ and ZLZM

du 14+pBcosd dw_ | B(6+cos6)+°(1+ﬁcos9)}sm0
=@+ costE B (B+ cos )3

Now if 8> 1, there will be some value of ¢ for which %+ cos =0, and therefore

2

5, it follows that

148 cos #=0; and since for this value of 4, %::O, and %=—W(626—1)?

. . X
it corresponds to a maximumn value of «, and therefore of 3-

But if @< 1, then there is some value of cos ¢ for which 8 cos =0, and therefore

for which »=infinity, which value corresponds therefore in this case to the maximum
X .

of Ve
Thus then it appears that according as
W)\ g < >/ W
8 or (1+~Wl S lor w2<z(1+—“71> S ... (65)
the maximum value of—)—(~ is attained when cosd=—[3 or = ﬁ ; that is, when
cos = (H— ) or = —————bﬁ’————— (66.)
]l f® W g( l+l) '. ’
In the one case the maximum value of?— will be inﬁnlty, N (678
1

and in the other case it will be represented by the formula
k(g + aw®)
X y{l g(k2+a2) } ‘

Ry

In the first case, i. e. when 3 <1, the wheel will slip every time that it revolves, what-

ever may be the value of f. In the second case, or when 8 >1, it will slip if /' do not

exceed the number represented by formula (68.). The conditions (65.) are obviously
MDCCCLI. 4p

(68.)
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the same with those (59.) which determine whether there be a jump or not, which agrees
with an observation in the preceding article, to the effect, that as the wheel must cease
to bite upon the rail before it can jump, it must always slip before it can jump. When
the conditions of slipping obtain, one of the wheels always biting when the other is
slipping, and the slips of the two wheels alternating, it is evident that the engine will
be impelled forwards, at certain periods of each revolution, by one wheel only, and
at others, by the other wheel only; and that this is true irrespective of the action of
the two pistons on the crank, and would be true if the steam were thrown off. Such
alternate propulsions on the two sides of the train cannot but communicate alternate
oscillations to the buffer-springs, the intervals between which will not be the same as
those between the propulsions; but they may so synchronize with a series of propul-
sions as that the amplitude of each oscillation may be increased by them until the
train attains that fish-tail motion with which railway travellers are familiar. It is
obvious that the results shown here to follow from a displacement of the centres of
gravity of the driving-wheels, cannot fail also to be produced by the alternate action
of the connecting rods at the most favourable driving points of the crank and at the
dead points*, and that the operation of these two causes may tend to neutralize or
may exaggerate one onother. It is not the object of this paper to discuss the ques-
tion under this point of view.

* A slip of the wheel may thus be, and probably is, produced at each revolution.

Wandsworth, Feb. 28, 1851.



